WNE Linear Algebra Final Exam

Series B

8 February 2016

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.

Let V = lin((1, 2, 1, 0), (0, 2, 1, 1), (1, 4, 2, 1), (3, 8, 4, 1)) be a subspace of \mathbb{R}^4 .

- a) find a system of linear equations which set of solutions is equal to V,
- b) let $W_t = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 + tx_2 + 2x_4 = 0\}$. For which $t \in \mathbb{R}$ the subspace V is a subset of W_t , i.e. $V \subset W_t$?

Problem 2.

Let $W \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

$$\begin{cases} x_1 + x_2 - 2x_3 + 2x_4 = 0\\ 4x_1 + 5x_2 - 3x_3 + 4x_4 = 0 \end{cases}$$

- a) find a basis and the dimension of the subspace W,
- b) find a basis \mathcal{A} of W such that the first two coordinates of the vector (1,-1,1,1) relative to \mathcal{A} are 1,-1.

Problem 3. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$

a) find matrix $C \in M(2 \times 2; \mathbb{R})$ such that $C^{-1}AC = \begin{bmatrix} s & 0 \\ 0 & -1 \end{bmatrix}$ for some $s \in \mathbb{R}$, b) compute A^{100} .

Problem 4.

Let $\mathcal{A} = ((1, -1, 0), (0, 2, 1), (0, 1, 0))$ be an ordered basis of \mathbb{R}^3 and let $\mathcal{B} = ((0, 1), (1, 1))$ be an ordered basis of \mathbb{R}^2 . The linear transformation $\psi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given by the formula $\psi((x_1, x_2, x_3)) = (x_2 + x_3, 2x_1 - x_2)$. The linear transformation $\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is given by the matrix $M(\varphi)_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$.

- a) find formula of φ ,
- b) compute matrix $M(\varphi \circ \psi)^{\mathcal{B}}_{\mathcal{A}}$.

Problem 5.

Let $V = \lim((1, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 2))$ be a subspace of \mathbb{R}^4 .

- a) find an orthonormal basis of V,
- b) compute the orthogonal projection of w = (0, 2, 0, 1) on V^{\perp} .

Problem 6.

 Let

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 2 & 2 \\ 1 & 3 & 1 & 4 \\ 2 & 4 & 2 & 5 \end{bmatrix}, \quad B_t = \begin{bmatrix} 3 & 1 & 0 & 5 \\ 2 & 1 & 2 & -3 \\ 0 & 0 & 1 & t \\ 0 & 0 & 1 & 4 \end{bmatrix},$$

where $t \in \mathbb{R}$.

a) compute $\det A$,

b) for which $t \in \mathbb{R}$ the matrix $B_t A^{-1}$ is invertible?

Problem 7.

Let $Q_t \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$ be a quadratic form given by $Q_t((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2tx_1x_3$.

a) for which $t \in \mathbb{R}$ the form Q_t is positive definite?

b) check if Q_t is either positive semidefinite or negative semidefinite for t = 1.

Problem 8.

Consider the following linear programming problem $6x_2 - x_3 + 3x_4 + x_5 \rightarrow \min$ in the standard form with constraints

$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 &= 6 \\ + 2x_2 + x_3 + 2x_4 + x_5 &= 2 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 5$$

- a) which of the sets $\mathcal{B}_1 = \{3, 4\}, \mathcal{B}_2 = \{1, 5\}, \mathcal{B}_3 = \{3, 5\}$ are basic? Which of the sets $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ are basic feasible and which are basic infeasible?
- b) solve the above linear programming problem using simplex method.