WNE Linear Algebra Final Exam
 Series B

8 February 2016

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.
Let $V=\operatorname{lin}((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1))$ be a subspace of \mathbb{R}^{4}.
a) find a system of linear equations which set of solutions is equal to V,
b) let $W_{t}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid 2 x_{1}+t x_{2}+2 x_{4}=0\right\}$. For which $t \in \mathbb{R}$ the subspace V is a subset of W_{t}, i.e. $V \subset W_{t}$?

Problem 2.

Let $W \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{cccc}
x_{1}+x_{2}-2 x_{3}+2 x_{4}=0 \\
4 x_{1}+5 x_{2}-3 x_{3}+4 x_{4}=0
\end{array}\right.
$$

a) find a basis and the dimension of the subspace W,
b) find a basis \mathcal{A} of W such that the first two coordinates of the vector (1,-1,1,1) relative to \mathcal{A} are $1,-1$.

Problem 3.

Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$
a) find matrix $C \in M(2 \times 2 ; \mathbb{R})$ such that $C^{-1} A C=\left[\begin{array}{cc}s & 0 \\ 0 & -1\end{array}\right]$ for some $s \in \mathbb{R}$,
b) compute A^{100}.

Problem 4.

Let $\mathcal{A}=((1,-1,0),(0,2,1),(0,1,0))$ be an ordered basis of \mathbb{R}^{3} and let $\mathcal{B}=((0,1),(1,1))$ be an ordered basis of \mathbb{R}^{2}. The linear transformation $\psi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is given by the formula $\psi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{2}+x_{3}, 2 x_{1}-x_{2}\right)$. The linear transformation $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is given by the matrix $M(\varphi)_{\mathcal{B}}^{\mathcal{B}}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$.
a) find formula of φ,
b) compute matrix $M(\varphi \circ \psi){ }_{\mathcal{A}}^{\mathcal{B}}$.

Problem 5.

Let $V=\operatorname{lin}((1,1,0,1),(0,0,1,1),(1,1,1,2))$ be a subspace of \mathbb{R}^{4}.
a) find an orthonormal basis of V,
b) compute the orthogonal projection of $w=(0,2,0,1)$ on V^{\perp}.

Problem 6.

Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & 2 & 2 & 2 \\
1 & 3 & 1 & 4 \\
2 & 4 & 2 & 5
\end{array}\right], \quad B_{t}=\left[\begin{array}{rrrr}
3 & 1 & 0 & 5 \\
2 & 1 & 2 & -3 \\
0 & 0 & 1 & t \\
0 & 0 & 1 & 4
\end{array}\right]
$$

where $t \in \mathbb{R}$.
a) compute $\operatorname{det} A$,
b) for which $t \in \mathbb{R}$ the matrix $B_{t} A^{-1}$ is invertible?

Problem 7.

Let $Q_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a quadratic form given by $Q_{t}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+$ $2 x_{1} x_{2}+2 t x_{1} x_{3}$.
a) for which $t \in \mathbb{R}$ the form Q_{t} is positive definite?
b) check if Q_{t} is either positive semidefinite or negative semidefinite for $t=1$.

Problem 8.

Consider the following linear programming problem $6 x_{2}-x_{3}+3 x_{4}+x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{rlll}
x_{1} & +3 x_{2}+x_{3}+2 x_{4} & =6 \\
& +2 x_{2}+x_{3}+2 x_{4}+x_{5} & =2
\end{array} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{3,4\}, \mathcal{B}_{2}=\{1,5\}, \mathcal{B}_{3}=\{3,5\}$ are basic? Which of the sets $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ are basic feasible and which are basic infeasible?
b) solve the above linear programming problem using simplex method.

